International Journal of Pure and Applied Mathematics

THE FORCING EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

S. Sujitha ${ }^{1}$, J. John ${ }^{2}$, A. Vijayan ${ }^{3} \S$
${ }^{1}$ Department of Mathematics
Holy Cross College (Autonomous)
Nagercoil, 629004, INDIA
${ }^{2}$ Department of Mathematics
Government College of Engineering
Tirunelveli, 627007, INDIA
${ }^{3}$ Department of Mathematics N.M. Christian College
Marthandam, 629165, INDIA

Abstract

For a connected graph $G=(V, E)$, a set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{e v}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by $f_{e v}(S)$, is the cardinality of a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of G, denoted by $f_{\text {ev }}(G)$, is $f_{e v}(G)=\min \left\{f_{e v}(S)\right\}$, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G. Some general properties satisfied by the concept forcing edge-to-vertex geodetic number is studied. The forcing edge-to-vertex geodetic number of certain classes of graphs are determined. It is shown that

Received: April 21, 2015
(c) 2015 Academic Publications, Ltd. url: www.acadpubl.eu
${ }^{\S}$ Correspondence author
for every pair a, b of integers with $0 \leq a<b$, there exists a connected graph G such that $f_{e v}(G)=a$ and $g_{e v}(G)=b$.

AMS Subject Classification: 05C12
Key Words: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic definitions and terminologies we refer to [1]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. Two vertices u and v of G are antipodal if $d(u, v)=\operatorname{diam} G$ or $d(G)$. The geodetic number $g(G)$ of G is the minimum order of a geodetic set and any geodetic set of order $g(G)$ is called a geodetic basis of G. The geodetic number of a graph was introduced in [1] and further studied in [5]. For subsets A and B of $V(G)$, the distance $d(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. A $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets $A, B \in V(G)$, where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E$ is called an edge-to-vertex geodetic set of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{e v}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G or a $g_{e v}(G)$-set of G. The edge-to-vertex geodetic number of a graph was first introduced in [12] and further studied in [7,11]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an extreme edge of G if one of its end is an extreme vertex of G. For any edge e in a connected graph G, the edge-to-edge eccentricity $e_{3}(e)$ of e is $e_{3}(e)=\max \{d(e, f): f \in E(G)\}$. Any edge e for which $e_{3}(e)$ is minimum is called an edge-to-edge central edge of G and the set of all edge-to-edge central edges of G is the edge-to-edge center of G. The minimum eccentricity among the edges of G is the edge-to-edge radius, $\operatorname{rad} G$ and the maximum eccentricity among the edges of G is the edge-to-edge diameter, diam G of G. Two edges e and f are antipodal if $d(e, f)=\operatorname{diam} G$ or $d(G)$. This concept was studied in [9]. The forcing concept was first introduced

Figure 1.1
and studied in minimum dominating sets in [2]. And then the forcing concept is applied in various graph parameters viz. geodetic sets, hull sets, matching's, Steiner sets and edge covering in $[3,4,6,8,10]$ by several authors. In this paper we study the forcing concept in minimum edge-to-vertex geodetic set of a connected graph.

Consider the graph G given in Figure 1.1 with $A=\left\{v_{4}, v_{5}\right\}$ and $B=$ $\left\{v_{1}, v_{2}, v_{7}\right\}$, the paths $P: v_{5}, v_{6}, v_{7}$ and $Q: v_{4}, v_{3}, v_{2}$ are the only two $A-B$ geodesics so that $d(A, B)=2$. For the graph G given in Figure 1.2, the three $v_{1} v_{6}-v_{3} v_{4}$ geodesics are $P: v_{1}, v_{2}, v_{3} ; Q: v_{1}, v_{2}, v_{4} ;$ and $R: v_{6}, v_{5}, v_{4}$ with each of length 2 so that $d\left(v_{1} v_{6}, v_{3} v_{4}\right)=2$. Since the vertices v_{2} and v_{5} lie on the $v_{1} v_{6}-v_{3} v_{4}$ geodesics P and R respectively, $S=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is an edge-to-vertex geodetic basis of G so that $g_{e v}(G)=2$.

Figure 1.2

Throughout the following G denotes a connected graph with at least three vertices. The following Theorems are used in the sequel.

Theorem 1.1. (see [12]) Let G be a connected graph with size q. Then every end-edge of G belongs to every edge-to-vertex geodetic set of G.

Theorem 1.2. (see [12]) For the complete bipartite graph $G=K_{m, n}(2 \leq$
$m<n), g_{e v}(G)=n$.
Theorem 1.3. (see [12]) If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.

2. The Forcing Edge-to-Vertex Geodetic Number of a Graph

Even though every connected graph contains a minimum edge-to-vertex geodetic set, some connected graph may contain several minimum edge-to-vertex geodetic sets. For each minimum edge-to-vertex geodetic set S in a connected graph G, there is always some subset T of S that uniquely determines S as the minimum edge-to-vertex geodetic set containing T. Such "forcing subsets" will be considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex geodetic set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by $f_{e v}(S)$, is the cardinality of a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of G, denoted by $f_{e v}(G)$, is $f_{e v}(G)=\min \left\{f_{e v}(S)\right\}$, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G.

Example 2.2. For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is the unique minimum edge-to-vertex geodetic set of G so that $f_{\text {ev }}(G)=0$. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1} v_{2}, v_{6} v_{7}, v_{7} v_{8}\right\}, S_{2}=\left\{v_{1} v_{2}, v_{5} v_{6}, v_{7} v_{8}\right\}$ and $S_{3}=\left\{v_{1} v_{2}, v_{5} v_{8}, v_{6} v_{7}\right\}$ are the only $g_{e v}$-sets of G, such that $f_{e v}\left(S_{1}\right)=2$, $f_{e v}\left(S_{2}\right)=f_{e v}\left(S_{3}\right)=1$ so that $f_{e v}(G)=1$.

The next theorem follows immediately from the definition of the edge-tovertex geodetic number and the forcing minimum edge-to-vertex geodetic number of a connected graph G.

Theorem 2.3. For every connected graph $G, 0 \leq f_{e v}(G) \leq g_{e v}(G)$.
Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 2.1, $f_{e v}(G)=0$ and for the graph $G=K_{3}, f_{e v}(G)=g_{e v}(G)=2$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 2.2, $f_{e v}(G)=1$ and $g_{e v}(G)=3$ so that $0<f_{e v}(G)<g_{e v}(G)$.

In the following, we characterize graphs G for which bounds in the Theorem 2.3 attained and also graph for which $f_{e v}(G)=1$.

Theorem 2.5. Let G be a connected graph. Then:
a) $f_{e v}(G)=0$ if and only if G has a unique minimum edge-to-vertex geodetic set.
b) $f_{e v}(G)=1$ if and only if G has at least two minimum edge-to-vertex geodetic sets, one of which is a unique minimum edge-to-vertex geodetic set containing one of its elements, and
c) $f_{e v}(G)=g_{e v}(G)$ if and only if no minimum edge-to-vertex geodetic set of G is the unique minimum edge-to-vertex geodetic set containing any of its proper subsets.

The proof of the theorem is straight forward. So we can omitt the proof.
Definition 2.6. An edge e of a connected graph G is an edge-to-vertex geodetic edge of G if e belongs to every edge-to-vertex geodetic basis of G. If G has a unique edge-to-vertex geodetic basis S, then every edge of S is an edge-to-vertex geodetic edge of G.

Example 2.7. For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is the unique minimum edge-to-vertex geodetic set of G so that both the edges in S are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex geodetic edge of G. In fact there are certain edge-to-vertex geodetic edges, which are not end edges of G as the following example shows.

Example 2.9. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1} v_{2}, v_{6} v_{7}, v_{7} v_{8}\right\}$, $S_{2}=\left\{v_{1} v_{2}, v_{5} v_{6}, v_{7} v_{8}\right\}$ and $S_{3}=\left\{v_{1} v_{2}, v_{5} v_{8}, v_{6} v_{7}\right\}$ are the only $g_{e v}$-sets of G so that every $g_{e v}$-set contains the edge $v_{1} v_{2}$. Hence the edge $v_{1} v_{2}$ is the unique edge-to-vertex geodetic edge of G, which is not an end edge of G.

Theorem 2.10. Let G be a connected graph and let \Im be the set of relative complements of the minimum forcing subsets in their respective minimum edge-to-vertex geodetic set of G. Then $\bigcap_{F \in \Im} F$ is the set of edge-to-vertex geodetic edges of G.

Corollary 2.11. Let G be a connected graph and S a minimum edge-tovertex geodetic set of G. Then no edge-to-vertex geodetic edge of G belongs to any minimum forcing set of S.

Theorem 2.12. Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G. Then $f_{e v}(G) \leq g_{e v}(G)-|W|$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then $g_{e v}(G)=$ $|S|, W \subseteq S$ and S is the unique minimum edge-to-vertex geodetic set containing $S-W$. Thus $f_{e v}(G) \leq|S-W| \leq|S|-|W|=g_{e v}(G)-|W|$.

Corollary 2.13. If G is a connected graph with k end edges, then $f_{e v}(G) \leq$ $g_{e v}(G)-k$.

Proof. This follows from Theorems 1.1 and 2.12.
Remark 2.14. The bound in Theorem 2.12 is sharp. For the graph G given in Figure 2.3, $S_{1}=\left\{v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{4} v_{6}\right\}, S_{2}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{4} v_{5}, v_{4} v_{6}\right\}, S_{3}=$ $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{4} v_{5}, v_{2} v_{6}\right\}$ and $S_{4}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{4} v_{5}, v_{2} v_{6}\right\}$ are the only four minimum edge-to-vertex geodetic sets of G such that $f_{e v}\left(S_{1}\right)=f_{e v}\left(S_{2}\right)=f_{e v}\left(S_{3}\right)=$ $f_{e v}\left(S_{4}\right)=2$ so that $f_{e v}(G)=2$ and $g_{e v}(G)=4$. Also, $W=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is the set of all edge-to-vertex geodetic edges of G and so $f_{e v}(G)=g_{e v}(G)-|W|$.

Figure 2.3

Also, the inequality in Theorem 2.12 can be strict. For the graph G given in Figure 2.2, $g_{e v}(G)=3$ and $f_{e v}\left(S_{2}\right)=f_{e v}\left(S_{3}\right)=1$ and $f_{e v}\left(S_{1}\right)=2$ so that $f_{e v}(G)=1$. Here, $v_{1} v_{2}$ is the only edge-to-vertex geodetic edge of G and so $f_{e v}(G)<g_{e v}(G)-|W|$.

In the following we determine the forcing edge-to-vertex geodetic number of some standard graphs.

Theorem 2.15. For an even cycle $C_{p}(p \geq 4)$, a set $S \subseteq E(G)$ is a minimum edge-to-vertex geodetic set if and only if S consists of antipodal edges.

Proof. Let $p=2 k$ and let $C_{p}: v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}, \ldots, v_{2 k}, v_{1}$ be the cycle. Then the edges $v_{1} v_{2}$ and $v_{k+1} v_{k+2}$ are antipodal edges. Let $S=\left\{v_{1} v_{2}, v_{k+1} v_{k+2}\right\}$. Clearly, S is a minimum edge-to-vertex geodetic set of C_{p}. Conversely, let S be a minimum edge-to-vertex geodetic set of C_{p}. Then $g_{e v}\left(C_{p}\right)=|S|$. Let S^{\prime} be any set of pair of antipodal edges of C_{p}. Then as in the first part of this theorem, S^{\prime} is a minimum edge-to-vertex geodetic set of C_{p}. Hence $\left|S^{\prime}\right|=|S|$. Thus $S=\{u v, x y\}$. If $u v$ and $x y$ are not antipodal, then any vertex that is not on the $u v-x y$ geodesic does not lie on the $u v-x y$ geodesic. Thus S is not a minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.16. For the cycle $C_{p}(p \geq 4), f_{e v}\left(C_{p}\right)=\left\{\begin{array}{c}1 \text { if } p \text { is even } \\ 2 \text { if } p \text { is odd }\end{array}\right\}$.
Proof. If p is even, then by Theorem 2.15, every minimum edge-to-vertex geodetic set of C_{p} consists of pair of antipodal edges. Hence C_{p} has $p / 2$ independent minimum edge-to-vertex geodetic sets and it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-vertex geodetic set of C_{p}. Hence it follows from Theorem $2.5(a)$ and (b) that $f_{e v}\left(C_{p}\right)=1$.

Let p be odd. Let $p=2 n+1$. Let the cycle be $C_{p}: v_{1}, v_{2}, v_{3}, \ldots, v_{2 n+1}, v_{1}$. If $S=\{u v, x y\}$ is any set of two edges of C_{p}, then no edge of the $u v-x y$ longest
path lies on the $u v-x y$ geodesic in C_{p} and so no two element subset of C_{p} is an edge-to-vertex geodetic set of C_{p}. Now, it clear that the sets

$$
\begin{gathered}
S_{1}=\left\{v_{1} v_{2}, v_{n+1} v_{n+2}, v_{2 n} v_{2 n+1}\right\}, \\
S_{2}=\left\{v_{1} v_{2}, v_{n+1} v_{n+2}, v_{2 n+1} v_{1}\right\}, \\
S_{3}=\left\{v_{2} v_{3}, v_{n+2} v_{n+3}, v_{2 n+1} v_{1}\right\}, \ldots, \\
S_{2 n}=\left\{v_{n} v_{n+1}, v_{2 n} v_{2 n+1}, v_{n-1} v_{n}\right\}, \\
S_{2 n+1}=\left\{v_{n+1} v_{n+2}, v_{2 n+1} v_{1}, v_{n-1} v_{n}\right\}
\end{gathered}
$$

are the minimum edge-to-vertex geodetic sets of C_{p}. (Note that there are more minimum edge-to-vertex geodetic sets of C_{p}, for example

$$
S=\left\{v_{n+2} v_{n+3}, v_{1} v_{2}, v_{n} v_{n+1}\right\}
$$

is a minimum edge-to-vertex geodetic set different from these). It is clear from the minimum edge-to-vertex geodetic sets $S_{i}(1 \leq i \leq 2 n+1)$ that each $\left\{v_{i} v_{i+1}\right\}(1 \leq i \leq 2 n)$ and $\left\{v_{2 n+1} v_{1}\right\}$ is a subset of more than one minimum edge-to-vertex geodetic set $S_{i}(1 \leq i \leq 2 n+1)$. Hence it follows from Theorem 2.5 (a) and (b) that $f_{e v}\left(C_{p}\right) \geq 2$. Since S_{1} is the unique minimum edge-to-vertex geodetic set containing $T=\left\{v_{n+1} v_{n+2}, v_{2 n} v_{2 n+1}\right\}$, it follows that $f_{e v}\left(S_{1}\right)=2$. Thus $f_{e v}\left(C_{p}\right)=2$.

Theorem 2.17. For the complete graph $G=K_{p}(p \geq 4)$ with p even, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of $p / 2$ independent edges.

Proof. Let S be any set of $p / 2$ independent edges of K_{p}. Since each vertex of K_{p} is incident with an edge of S, it follows that $g_{e v}(G) \leq p / 2$. If $g_{e v}(G)<p / 2$, then there exists a minimum edge-to-vertex geodetic set S^{\prime} of K_{p} such that $\left|S^{\prime}\right|<p / 2$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. Hence v is neither incident with any edge of S^{\prime} nor lies on a geodesic joining a pair of edges of S^{\prime} and so S^{\prime} is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Thus S is a minimum edge-to-vertex geodetic set of K_{p}.

Conversely, let S be a minimum edge-to-vertex geodetic set of K_{p}. Let S^{\prime} be any set of $p / 2$ independent edges of K_{p}. Then as in the first part of this theorem, S^{\prime} is a minimum edge-to-vertex geodetic basis of K_{p}. Therefore $\left|S^{\prime}\right|=p / 2$. Hence $|S|=p / 2$. If S is not independent, then there exists a vertex v of K_{p} such that v is not incident with any edge of S and it follows that S
is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Therefore, S consists of $p / 2$ independent edges.

Theorem 2.18. For the complete graph $G=K_{p}(p \geq 4)$ with p even, $f_{e v}(G)=\frac{P-2}{2}$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G such that $|S|=p / 2$. Then by Theorem 2.17, every element of S is independent. We show that $f_{e v}(G)=\frac{P}{2}-1$. Suppose that $f_{e v}(G) \leq \frac{P}{2}-2$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| \leq \frac{P}{2}-2$. Hence there exists at least two edges $u_{i} u_{j}, u_{l} u_{m} \in S$ such that $u_{i} u_{j}, u_{l} u_{m} \notin T$ and $i \neq l, j \neq m$. Then $S_{1}=S-\left\{u_{i} u_{j}, u_{l} u_{m}\right\} \cup\left\{u_{i} u_{m}, u_{l} u_{j}\right\}$ is a set of $p / 2$ independent edges of G containing T. By Theorem 2.16, S_{1} is a minimum edge-to-vertex geodetic set of G which is a contradiction to T is a forcing subset of S. Hence $f_{e v}(G)=$ $\frac{P}{2}-1=\frac{P-2}{2}$.

Theorem 2.19. For the complete graph $G=K_{p}(p \geq 5)$ with p odd, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G.

Proof. Let S_{1} be any set of $\frac{P-3}{2}$ independent edges of K_{p} and S_{2} be two adjacent edges of K_{p}, each of which is independent with the edges of S_{1}. Let $S=S_{1} \cup S_{2}$. Since each vertex of K_{p} is incident with an element of S, it follows that S is a minimum edge-to-vertex geodetic set of K_{p} so that $g_{e v}(G) \leq$ $\frac{P-3}{2}+2=\frac{P+1}{2}$. If $g_{e v}(G)<\frac{P+1}{2}$, then there exists a minimum edge-to-vertex geodetic set S^{\prime} of K_{p} such that $\left|S^{\prime}\right|<\frac{P+1}{2}$. Therefore, there exists at least one vertex v of K_{p} such that v is not incident with any edge of S^{\prime}. Hence the vertex v is neither incident with any edge of S^{\prime} nor lies on a geodesic joining a pair of edges of S^{\prime} and so S^{\prime} is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Hence $g_{e v}(G)=\frac{P+1}{2}$.

Conversely, let S be a minimum edge-to-vertex geodetic set of G. Let S^{\prime} be any set of $\frac{P-3}{2}$ independent edges of G and two adjacent edges of G. Then as in the first part of this theorem, S^{\prime} is a minimum edge-to-vertex geodetic set of G. Therefore, $\left|S^{\prime}\right|=\frac{P+1}{2}$. Hence $|S|=\frac{P+1}{2}$. Let us assume that $S=S_{1} \cup S_{2}$, where S_{1} consists of independent edges and S_{2} consists of adjacent edges of G. If $|S 1| \leq \frac{P-3}{2}-1$, then S_{2} must contain at most $n-\left|S_{1}\right|$ edges. Then there exists at least one vertex v of K_{p} such that v is not incident with any edge
of S and so S is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Therefore S consists of $\frac{P-3}{2}$ independent edges of G and two adjacent edges of G.

Theorem 2.20. For the complete graph $G=K_{p}(p \geq 5)$ with p odd, $f_{e v}(G)=\frac{P-1}{2}$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then by Theorem 2.19, $S=S_{1} \cup S_{2}$, where S_{1} consists of $\frac{P-3}{2}$ independent edges and S_{2} consists of two adjacent edges and $|S|=\frac{P+1}{2}$. We show that $f_{e v}(G)=\frac{P+1}{2}-1$. Suppose that $f_{e v}(G) \leq \frac{P+1}{2}-2$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| \leq \frac{P+1}{2}-2$. Hence there exists at least two edges $x, y \in S$ such that $x, y \notin T$. Let us assume that $S_{2}=\left\{u_{x} u_{y}, u_{y} u_{z}\right\}$. Suppose that $x, y \in S_{1}$. Then $x=u_{i} u_{j}$ and $y=u_{l} u_{m}$ such that $i \neq l, j \neq m$. Now, $S_{3}=S-\{x, y\} \cup\left\{u_{i} u_{m}, u_{l} u_{j}\right\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.19, S_{3} is a minimum edge-to-vertex geodetic set of G containing T, which is a contradiction to T is a forcing subset of G. Suppose that $x, y \in S_{2}$. Let $x=u_{x} u_{y}$ and $y=u_{y} u_{z}$. Let $u_{i} u_{j}$ be an edge of S_{1}. Now, join the vertices u_{y}, u_{i} and u_{z}, u_{j}. Now $S_{4}=S_{1}-\left\{u_{i} u_{j}\right\} \cup\left\{u_{x} u_{y}\right\} \cup\left\{u_{y} u_{i}, u_{z} u_{j}\right\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G. By Theorem 2.19, S_{4} is a minimum edge-to-vertex geodetic set of G containing T, which is a contradiction. Suppose that $x \in S_{1}$ and $y \in S_{2}$. Let $x=u_{i} u_{j}$ and $y=u_{x} u_{y}$. Now, $S_{5}=S_{1}-\left\{u_{i} u_{j}\right\} \cup\left\{u_{j} u_{y}\right\} \cup\left\{u_{i} u_{x}, u_{y} u_{z}\right\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.19, S_{5} is a minimum edge-to-vertex geodetic set of G, which is a contradiction to that T is a forcing subset of G. Hence $f_{e v}(G)=\frac{P+1}{2}-1=\frac{P-1}{2}$.

Theorem 2.21. A set S of edges of $G=K_{n, n}(n \geq 2)$ is a minimum edge-to-vertex geodetic set of G if and only if S consists of n independent edges.

Proof. The proof is similar to the proof of Theorem 2.17.

Theorem 2.22. For the complete bipartite graph $G=K_{n, n}(n \geq 2)$, $f_{e v}(G)=n-1$.

Proof. The proof is similar to the proof of Theorem 2.18.

Theorem 2.23. A set S of edges of $G=K_{m, n}(2 \leq m<n)$ a minimum edge-to-vertex geodetic set of G if and only if S consists of $m-1$ independent edges of G and $n-m+1$ adjacent edges of G.

Proof. The proof is similar to the proof of Theorem 2.19.

Theorem 2.24. For the complete bipartite graph $G=K_{m, n}(2 \leq m<n)$, $f_{e v}(G)=n-1$.

Proof. The proof is similar to the proof of Theorem 2.20.

Theorem 2.25. For a non trivial tree of size $q \geq 2, f_{e v}(G)=0$.
Proof. For $G=K_{1, q}$, it follows from Theorem 1.1 that the set of all end edges of G is the unique minimum edge-to-vertex geodetic set of G. Now, it follows from Theorem 2.5(a) that $f_{e v}(G)=0$.

3. Realization Result

In view of Theorem 2.3, we have the following realization theorem.
Theorem 3.1. For every pair a, b of integers with $0 \leq a<b$, there exists a connected graph G such that $f_{e v}(G)=a$ and $g_{e v}(G)=b$.

Proof. Suppose $a=0$. Let $G=K_{1, b}$. Then by Theorem $2.25, f_{e v}(G)=0$ and from Theorem 1.1, $g_{e v}(G)=b$. Suppose that $b=a+1$. Let $G=K_{2, b}$. Then by Theorem 1.2, $g_{e v}(G)=b$ and from Theorem 2.24, $f_{e v}(G)=b-1=a$. Thus, we assume that $0<a<b$. Let $F_{i}: u_{i}, v_{i}, x_{i}, u_{i}(1 \leq i \leq a)$ be a copy of C_{3}. Let G be the graph obtained from $F_{i}(1 \leq i \leq a)$ by first identifying the vertices x_{i-1} of F_{i-1} and x_{i} of $F_{i}(2 \leq i \leq a)$ and then adding $b-a$ new vertices $z_{1}, z_{2}, \ldots, z_{b-a-1}, u$ and joining the $b-a$ edges $u_{1} z_{i}(1 \leq i \leq b-a-1)$ and $x_{a} u$. The graph G is given in Figure 3.1. Let $Z=\left\{u_{1} z_{1}, u_{1} z_{2}, \ldots, u_{1} z_{b-a-1}, x_{a} u\right\}$ be the set of all end edges of G. Let $H i=\left\{h_{i}, k_{i}\right\}(1 \leq i \leq a)$, where $h_{i}=u_{i} v_{i}$ and $k_{i}=v_{i} x_{i}$. First we show that $g_{e v}(G)=b$. By Theorem 1.3, every edge- to-vertex geodetic set of G must contain at least one vertex from $H_{i}(1 \leq i \leq a)$. Thus $g_{e v}(G) \geq b-a+a=b$. On the other hand, since the set $S=Z \cup\left\{h_{1}, h_{2}, \ldots, h_{a}\right\}$ is a minimum edge-to-vertex geodetic set of G, it follows that $g_{e v}(G) \leq|S|=b$.

Figure 3.1

Thus $g_{e v}(G)=b$. Next we show that $f_{e v}(G)=a$. Since every $g_{e v}$-set of G contains Z, it follows from Theorem 2.12 that $f_{e v}(G) \leq g_{e v}(G)-|Z|=$ $b-(b-a)=a$. Now, since $g_{e v}(G)=b$ and every minimum edge-to-vertex geodetic set of G contains S, it is easily seen that every minimum edge-to-vertex geodetic set W is of the form $W \cup\left\{e_{1}, e_{2}, \ldots, e_{a}\right\}$, where $e_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then there exists an edge $e_{j}(1 \leq j \leq a)$ such that $e j \notin T$. Let f_{j} be an edge of H_{j} distinct from e_{j}. Then $W_{1}=\left(S-\left\{e_{j}\right\}\right) \cup\left\{f_{j}\right\}$ is a $g_{e v}$-set properly containing T. Thus W is not the unique $g_{e v}$-set containing T. Thus T is not a forcing subset of S. This is true for all minimum edge-to-vertex geodetic sets of G and so it follows that $f_{e v}(G)=a$.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, (1990).
[2] G. Chartrand, H. Galvas, R.C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math. Comput, 25(1997) 161-174
[3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Graph Theory, 19(1999) 45-58.
[4] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Comput, 36(2001) 81-94..
[5] F. Hararry, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling, 17(1993), 89- 95.
[6] Heping Zhang, Dong Ye, Wai Chee and Shiu, Forcing matching numbers of fullerene graphs, Discrete Applied Mathematics, 158(2010) 573-582.
[7] J. John, A.vijayan and S.Sujitha, The Upper Edge-to-Vertex Geodetic Number of a Graph, International Journal of Mathematical Archive, $3(4)(2012)$ 1423-1428.
[8] Peter Adams, Mohammad Mahdian and E. S.Mahmodian, On the forced matching numbers of bipartite graphs, Discrete Mathematics, 281(2004) 1-12.
[9] A.P. Santhakumaran, Center of graph with respect to edges, Scientia, 19(2010) 13-23.
[10] A. P. Santhakumaran and J. John, The forcing Steiner number of a Graph, Discuss. Math. Graph Theory, 31(2011) 171-181.
[11] A.P. Santhakumaran and J. John, On the Edge-to-Vertex Geodetic Number of a Graph, Miskolc Mathematical Notes, 13(1)(2012) 107-119.
[12] A.P. Santhakumaran and J. John, The Edge-to-Vertex Geodetic Number of a Graph, Serdica Journal of Mathematics (communicated).

