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Abstract: For a connected graph G = (V,E), a set S ⊆ E is called an
edge-to-vertex geodetic set of G if every vertex of G is either incident with an
edge of S or lies on a geodesic joining a pair of edges of S. The minimum
cardinality of an edge-to-vertex geodetic set of G is gev(G). Any edge-to-vertex
geodetic set of cardinality gev(G) is called an edge-to-vertex geodetic basis of
G. A subset T ⊆ S is called a forcing subset for S if S is the unique minimum
edge-to-vertex geodetic set containing T . A forcing subset for S of minimum
cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic
number of S, denoted by fev(S), is the cardinality of a minimum forcing subset
of S. The forcing edge-to-vertex geodetic number of G, denoted by fev(G), is
fev(G) = min {fev(S)}, where the minimum is taken over all minimum edge-
to-vertex geodetic sets S in G. Some general properties satisfied by the concept
forcing edge-to-vertex geodetic number is studied. The forcing edge-to-vertex
geodetic number of certain classes of graphs are determined. It is shown that
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for every pair a, b of integers with 0 ≤ a < b, there exists a connected graph G
such that fev(G) = a and gev(G) = b.

AMS Subject Classification: 05C12
Key Words: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic
number

1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and q
respectively. For basic definitions and terminologies we refer to [1]. For vertices
u and v in a connected graph G, the distance d (u, v) is the length of a shortest
u− v path in G. A u− v path of length d (u, v) is called an u− v geodesic. Two
vertices u and v of G are antipodal if d(u, v)=diam G or d(G). The geodetic

number g(G) of G is the minimum order of a geodetic set and any geodetic set of
order g(G) is called a geodetic basis of G. The geodetic number of a graph was
introduced in [1] and further studied in [5]. For subsets A and B of V (G), the
distance d (A,B) is defined as d (A,B) = min {d (x, y) : x ∈ A, y ∈ B}. A u− v
path of length d (A,B) is called an A−B geodesic joining the sets A,B ∈ V (G),
where u ∈ A and v ∈ B. A vertex x is said to lie on an A−B geodesic if x is
a vertex of an A−B geodesic. For A = {u, v} and B = {z, w} with uv and zw
edges, we write an A−B geodesic as uv−zw geodesic and d (A,B) as d (uv, zw).
A set S ⊆ E is called an edge-to-vertex geodetic set of G if every vertex of G is
either incident with an edge of S or lies on a geodesic joining a pair of edges of
S. The minimum cardinality of an edge-to-vertex geodetic set of G is gev (G).
Any edge-to-vertex geodetic set of cardinality gev (G) is called an edge-to-vertex

geodetic basis of G or a gev (G)-set of G. The edge-to-vertex geodetic number
of a graph was first introduced in [12] and further studied in [7,11]. A vertex
v is an extreme vertex of a graph G if the subgraph induced by its neighbors
is complete. An edge of a connected graph G is called an extreme edge of G if
one of its end is an extreme vertex of G. For any edge e in a connected graph
G, the edge-to-edge eccentricity e3(e) of e is e3(e)= max {d(e, f) : f ∈ E(G)}.
Any edge e for which e3(e) is minimum is called an edge-to-edge central edge of
G and the set of all edge-to-edge central edges of G is the edge-to-edge center of
G. The minimum eccentricity among the edges of G is the edge-to-edge radius,
rad G and the maximum eccentricity among the edges of G is the edge-to-edge

diameter, diam G of G. Two edges e and f are antipodal if d(e, f) = diam G or
d(G). This concept was studied in [9]. The forcing concept was first introduced
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and studied in minimum dominating sets in [2]. And then the forcing concept
is applied in various graph parameters viz. geodetic sets, hull sets, matching’s,
Steiner sets and edge covering in [3, 4, 6, 8, 10 ] by several authors. In this
paper we study the forcing concept in minimum edge-to-vertex geodetic set of
a connected graph.

Consider the graph G given in Figure 1.1 with A = {v4, v5} and B =
{v1, v2, v7}, the paths P : v5, v6, v7 and Q : v4, v3, v2 are the only two A − B
geodesics so that d(A,B) = 2. For the graph G given in Figure 1.2, the three
v1v6 − v3v4 geodesics are P : v1, v2, v3 ; Q : v1, v2, v4 ; and R : v6, v5, v4 with
each of length 2 so that d (v1v6, v3v4) = 2. Since the vertices v2 and v5 lie on the
v1v6−v3v4 geodesics P and R respectively, S = {v1v6, v3v4} is an edge-to-vertex
geodetic basis of G so that gev (G) = 2.

Throughout the following G denotes a connected graph with at least three
vertices. The following Theorems are used in the sequel.

Theorem 1.1. (see [12]) Let G be a connected graph with size q. Then
every end-edge of G belongs to every edge-to-vertex geodetic set of G.

Theorem 1.2. (see [12]) For the complete bipartite graph G = Km,n(2 ≤
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m < n), gev(G) = n.

Theorem 1.3. (see [12]) If v is an extreme vertex of a connected graph G,
then every edge-to-vertex geodetic set contains at least one extreme edge that
is incident with v.

2. The Forcing Edge-to-Vertex Geodetic Number of a Graph

Even though every connected graph contains a minimum edge-to-vertex geode-
tic set, some connected graph may contain several minimum edge-to-vertex
geodetic sets. For each minimum edge-to-vertex geodetic set S in a connected
graph G, there is always some subset T of S that uniquely determines S as the
minimum edge-to-vertex geodetic set containing T . Such ”forcing subsets” will
be considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex
geodetic set of G. A subset T ⊆ S is called a forcing subset for S if S is the
unique minimum edge-to-vertex geodetic set containing T . A forcing subset
for S of minimum cardinality is a minimum forcing subset of S. The forcing
edge-to-vertex geodetic number of S, denoted by fev(S), is the cardinality of a
minimum forcing subset of S. The forcing edge-to-vertex geodetic number of
G, denoted by fev(G), is fev(G) = min {fev(S)}, where the minimum is taken
over all minimum edge-to-vertex geodetic sets S in G.

Example 2.2. For the graph G given in Figure 2.1, S = {v1v2, v4v5} is
the unique minimum edge-to-vertex geodetic set of G so that fev(G) = 0. For
the graph G given in Figure 2.2, S1 = {v1v2, v6v7, v7v8}, S2 = {v1v2, v5v6, v7v8}
and S3 = {v1v2, v5v8, v6v7} are the only gev-sets of G, such that fev(S1) = 2,
fev(S2) = fev(S3) = 1 so that fev(G) = 1.

The next theorem follows immediately from the definition of the edge-to-
vertex geodetic number and the forcing minimum edge-to-vertex geodetic num-
ber of a connected graph G.

Theorem 2.3. For every connected graph G, 0 ≤ fev(G) ≤ gev(G).

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given
in Figure 2.1, fev(G) = 0 and for the graph G = K3, fev(G) = gev(G) = 2.
Also, all the inequalities in the theorem are strict. For the graph G given in
Figure 2.2, fev(G) = 1 and gev(G) = 3 so that 0 < fev(G) < gev(G).
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In the following, we characterize graphs G for which bounds in the Theorem
2.3 attained and also graph for which fev(G) = 1.

Theorem 2.5. Let G be a connected graph. Then:

a) fev(G) = 0 if and only if G has a unique minimum edge-to-vertex geodetic
set.

b) fev(G) = 1 if and only if G has at least two minimum edge-to-vertex
geodetic sets, one of which is a unique minimum edge-to-vertex geodetic set
containing one of its elements, and

c) fev(G) = gev(G) if and only if no minimum edge-to-vertex geodetic set
of G is the unique minimum edge-to-vertex geodetic set containing any of its
proper subsets.

The proof of the theorem is straight forward. So we can omitt the proof.

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex
geodetic edge of G if e belongs to every edge-to-vertex geodetic basis of G. If
G has a unique edge-to-vertex geodetic basis S, then every edge of S is an
edge-to-vertex geodetic edge of G.



114 S. Sujitha, J. John, A. Vijayan

Example 2.7. For the graph G given in Figure 2.1, S = {v1v2, v4v5} is the
unique minimum edge-to-vertex geodetic set of G so that both the edges in S
are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex
geodetic edge of G. In fact there are certain edge-to-vertex geodetic edges,
which are not end edges of G as the following example shows.

Example 2.9. For the graph G given in Figure 2.2, S1 = {v1v2, v6v7, v7v8},
S2 = {v1v2, v5v6, v7v8} and S3 = {v1v2, v5v8, v6v7} are the only gev-sets of G so
that every gev-set contains the edge v1v2. Hence the edge v1v2 is the unique
edge-to-vertex geodetic edge of G, which is not an end edge of G.

Theorem 2.10. Let G be a connected graph and let ℑ be the set of relative
complements of the minimum forcing subsets in their respective minimum edge-
to-vertex geodetic set of G. Then

⋂

F∈ℑ F is the set of edge-to-vertex geodetic
edges of G.

Corollary 2.11. Let G be a connected graph and S a minimum edge-to-
vertex geodetic set of G. Then no edge-to-vertex geodetic edge of G belongs to
any minimum forcing set of S.

Theorem 2.12. Let G be a connected graph and W be the set of all
edge-to-vertex geodetic edges of G. Then fev(G) ≤ gev(G) − |W |.

Proof. Let S be a minimum edge-to-vertex geodetic set ofG. Then gev(G) =
|S|, W ⊆ S and S is the unique minimum edge-to-vertex geodetic set containing
S −W . Thus fev(G) ≤ |S −W | ≤ |S| − |W | = gev(G) − |W |.

Corollary 2.13. If G is a connected graph with k end edges, then fev(G) ≤
gev(G)− k.

Proof. This follows from Theorems 1.1 and 2.12.

Remark 2.14. The bound in Theorem 2.12 is sharp. For the graph G given
in Figure 2.3, S1 = {v1v2, v2v3, v4v5, v4v6}, S2 = {v1v2, v3v4, v4v5, v4v6}, S3 =
{v1v2, v2v3, v4v5, v2v6} and S4 = {v1v2, v3v4, v4v5, v2v6} are the only four mini-
mum edge-to-vertex geodetic sets of G such that fev(S1) = fev(S2) = fev(S3) =
fev(S4) = 2 so that fev(G) = 2 and gev(G) = 4. Also, W = {v1v2, v4v5} is
the set of all edge-to-vertex geodetic edges of G and so fev(G) = gev(G)− |W |.
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Also, the inequality in Theorem 2.12 can be strict. For the graph G given in
Figure 2.2, gev(G) = 3 and fev(S2) = fev(S3) = 1 and fev(S1) = 2 so that
fev(G) = 1. Here, v1v2 is the only edge-to-vertex geodetic edge of G and so
fev(G) < gev(G)− |W |.

In the following we determine the forcing edge-to-vertex geodetic number
of some standard graphs.

Theorem 2.15. For an even cycle Cp(p ≥ 4), a set S ⊆ E(G) is a minimum
edge-to-vertex geodetic set if and only if S consists of antipodal edges.

Proof. Let p = 2k and let Cp : v1, v2, v3, ..., vk , vk+1, ..., v2k , v1 be the cycle.
Then the edges v1v2 and vk+1vk+2 are antipodal edges. Let S = {v1v2, vk+1vk+2}.
Clearly, S is a minimum edge-to-vertex geodetic set of Cp. Conversely, let S
be a minimum edge-to-vertex geodetic set of Cp. Then gev(Cp) = |S|. Let S

′

be any set of pair of antipodal edges of Cp. Then as in the first part of this
theorem, S

′

is a minimum edge-to-vertex geodetic set of Cp. Hence |S
′

| = |S|.
Thus S = {uv, xy}. If uv and xy are not antipodal, then any vertex that is not
on the uv − xy geodesic does not lie on the uv − xy geodesic. Thus S is not a
minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.16. For the cycle Cp(p ≥ 4), fev(Cp) =

{

1 if p is even
2 if p is odd

}

.

Proof. If p is even, then by Theorem 2.15, every minimum edge-to-vertex
geodetic set of Cp consists of pair of antipodal edges. Hence Cp has p/2 indepen-
dent minimum edge-to-vertex geodetic sets and it is clear that each singleton
set is the minimum forcing set for exactly one minimum edge-to-vertex geodetic
set of Cp. Hence it follows from Theorem 2.5 (a) and (b) that fev(Cp) = 1.

Let p be odd. Let p = 2n+1. Let the cycle be Cp : v1, v2, v3, ..., v2n+1, v1. If
S = {uv, xy} is any set of two edges of Cp, then no edge of the uv− xy longest
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path lies on the uv − xy geodesic in Cp and so no two element subset of Cp is
an edge-to-vertex geodetic set of Cp. Now, it clear that the sets

S1 = {v1v2, vn+1vn+2, v2nv2n+1} ,

S2 = {v1v2, vn+1vn+2, v2n+1v1} ,

S3 = {v2v3, vn+2vn+3, v2n+1v1} , ...,

S2n = {vnvn+1, v2nv2n+1, vn−1vn} ,

S2n+1 = {vn+1vn+2, v2n+1v1, vn−1vn}

are the minimum edge-to-vertex geodetic sets of Cp. (Note that there are more
minimum edge-to-vertex geodetic sets of Cp, for example

S = {vn+2vn+3, v1v2, vnvn+1}

is a minimum edge-to-vertex geodetic set different from these). It is clear
from the minimum edge-to-vertex geodetic sets Si (1 ≤ i ≤ 2n + 1) that each
{vivi+1} (1 ≤ i ≤ 2n) and {v2n+1v1} is a subset of more than one minimum
edge-to-vertex geodetic set Si(1 ≤ i ≤ 2n + 1). Hence it follows from Theorem
2.5 (a) and (b) that fev(Cp) ≥ 2. Since S1 is the unique minimum edge-to-vertex
geodetic set containing T = {vn+1vn+2, v2nv2n+1}, it follows that fev(S1) = 2.
Thus fev(Cp) = 2.

Theorem 2.17. For the complete graph G = Kp(p ≥ 4) with p even, a set
S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S
consists of p/2 independent edges.

Proof. Let S be any set of p/2 independent edges ofKp. Since each vertex of
Kp is incident with an edge of S, it follows that gev(G) ≤ p/2. If gev(G) < p/2,
then there exists a minimum edge-to-vertex geodetic set S

′

of Kp such that
|S

′

| < p/2. Therefore, there exists at least one vertex v of Kp such that v is
not incident with any edge of S

′

. Hence v is neither incident with any edge
of S

′

nor lies on a geodesic joining a pair of edges of S
′

and so S
′

is not a
minimum edge-to-vertex geodetic set of G, which is a contradiction. Thus S is
a minimum edge-to-vertex geodetic set of Kp.

Conversely, let S be a minimum edge-to-vertex geodetic set of Kp. Let
S

′

be any set of p/2 independent edges of Kp. Then as in the first part of
this theorem, S

′

is a minimum edge-to-vertex geodetic basis of Kp. Therefore
∣

∣

∣
S

′

∣

∣

∣
= p/2. Hence |S| = p/2. If S is not independent, then there exists a vertex

v of Kp such that v is not incident with any edge of S and it follows that S
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is not a minimum edge-to-vertex geodetic set of G, which is a contradiction.
Therefore, S consists of p/2 independent edges.

Theorem 2.18. For the complete graph G = Kp(p ≥ 4) with p even,
fev(G) = P−2

2 .

Proof. Let S be a minimum edge-to-vertex geodetic set of G such that
|S| = p/2. Then by Theorem 2.17, every element of S is independent. We
show that fev(G) = P

2 − 1. Suppose that fev(G) ≤ P
2 − 2. Then there exists

a forcing subset T of S such that S is the unique minimum edge-to-vertex
geodetic set of G containing T and |T | ≤ P

2 − 2 . Hence there exists at least
two edges uiuj , ulum ∈ S such that uiuj, ulum /∈ T and i 6= l, j 6= m. Then
S1 = S − {uiuj, ulum} ∪ {uium, uluj} is a set of p/2 independent edges of G
containing T . By Theorem 2.16, S1 is a minimum edge-to-vertex geodetic set
of G which is a contradiction to T is a forcing subset of S. Hence fev(G) =
P
2 − 1 = P−2

2 .

Theorem 2.19. For the complete graph G = Kp(p ≥ 5) with p odd, a set
S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S
consists of P−3

2 independent edges and two adjacent edges of G.

Proof. Let S1 be any set of P−3
2 independent edges of Kp and S2 be two

adjacent edges of Kp, each of which is independent with the edges of S1. Let
S = S1 ∪ S2. Since each vertex of Kp is incident with an element of S, it
follows that S is a minimum edge-to-vertex geodetic set of Kp so that gev(G) ≤
P−3
2 + 2 = P+1

2 . If gev(G) < P+1
2 , then there exists a minimum edge-to-vertex

geodetic set S
′

of K
p
such that |S

′

| < P+1
2 . Therefore, there exists at least

one vertex v of Kp such that v is not incident with any edge of S
′

. Hence the
vertex v is neither incident with any edge of S

′

nor lies on a geodesic joining a
pair of edges of S

′

and so S
′

is not a minimum edge-to-vertex geodetic set of
G, which is a contradiction. Hence gev(G) = P+1

2 .

Conversely, let S be a minimum edge-to-vertex geodetic set of G. Let S
′

be
any set of P−3

2 independent edges of G and two adjacent edges of G. Then as

in the first part of this theorem, S
′

is a minimum edge-to-vertex geodetic set of
G. Therefore, |S

′

| = P+1
2 . Hence |S| = P+1

2 . Let us assume that S = S1 ∪ S2,
where S1 consists of independent edges and S2 consists of adjacent edges of G.
If |S1| ≤ P−3

2 − 1, then S2 must contain at most n − |S1| edges. Then there
exists at least one vertex v of Kp such that v is not incident with any edge
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of S and so S is not a minimum edge-to-vertex geodetic set of G, which is a
contradiction. Therefore S consists of P−3

2 independent edges of G and two
adjacent edges of G.

Theorem 2.20. For the complete graph G = Kp(p ≥ 5) with p odd,
fev(G) = P−1

2 .

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then by
Theorem 2.19, S = S1∪S2, where S1 consists of

P−3
2 independent edges and S2

consists of two adjacent edges and |S| = P+1
2 . We show that fev(G) = P+1

2 −1.
Suppose that fev(G) ≤ P+1

2 − 2. Then there exists a forcing subset T of S such
that S is the unique minimum edge-to-vertex geodetic set of G containing T and
|T | ≤ P+1

2 −2. Hence there exists at least two edges x, y ∈ S such that x, y /∈ T .
Let us assume that S2 = {uxuy, uyuz}. Suppose that x, y ∈ S1. Then x = uiuj
and y = ulum such that i 6= l, j 6= m. Now, S3 = S − {x, y} ∪ {uium, uluj}
consists of P−3

2 independent edges and two adjacent edges of G containing T .
By Theorem 2.19, S3 is a minimum edge-to-vertex geodetic set of G containing
T , which is a contradiction to T is a forcing subset of G. Suppose that x, y ∈ S2.
Let x = uxuy and y = uyuz. Let uiuj be an edge of S1. Now, join the vertices
uy, ui and uz, uj . Now S4 = S1 − {uiuj} ∪ {uxuy} ∪ {uyui, uzuj} consists
of P−3

2 independent edges and two adjacent edges of G. By Theorem 2.19,
S4 is a minimum edge-to-vertex geodetic set of G containing T , which is a
contradiction. Suppose that x ∈ S1 and y ∈ S2. Let x = uiuj and y = uxuy.
Now, S5 = S1 − {uiuj} ∪ {ujuy} ∪ {uiux, uyuz} consists of P−3

2 independent
edges and two adjacent edges of G containing T . By Theorem 2.19, S5 is a
minimum edge-to-vertex geodetic set of G, which is a contradiction to that T
is a forcing subset of G. Hence fev(G) = P+1

2 − 1 = P−1
2 .

Theorem 2.21. A set S of edges of G = Kn,n(n ≥ 2) is a minimum edge-
to-vertex geodetic set of G if and only if S consists of n independent edges.

Proof. The proof is similar to the proof of Theorem 2.17.

Theorem 2.22. For the complete bipartite graph G = Kn,n(n ≥ 2),
fev(G) = n− 1.

Proof. The proof is similar to the proof of Theorem 2.18.
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Theorem 2.23. A set S of edges of G = Km,n(2 ≤ m < n) a minimum
edge-to-vertex geodetic set of G if and only if S consists of m− 1 independent
edges of G and n−m+ 1 adjacent edges of G.

Proof. The proof is similar to the proof of Theorem 2.19.

Theorem 2.24. For the complete bipartite graph G = Km,n(2 ≤ m < n),
fev(G) = n− 1.

Proof. The proof is similar to the proof of Theorem 2.20.

Theorem 2.25. For a non trivial tree of size q ≥ 2, fev(G) = 0.

Proof. For G = K1,q, it follows from Theorem 1.1 that the set of all end
edges of G is the unique minimum edge-to-vertex geodetic set of G. Now, it
follows from Theorem 2.5(a) that fev(G) = 0.

3. Realization Result

In view of Theorem 2.3, we have the following realization theorem.

Theorem 3.1. For every pair a, b of integers with 0 ≤ a < b, there exists
a connected graph G such that fev(G) = a and gev(G) = b.

Proof. Suppose a = 0. Let G = K1,b. Then by Theorem 2.25, fev(G) = 0
and from Theorem 1.1, gev(G) = b. Suppose that b = a + 1. Let G = K2,b.
Then by Theorem 1.2, gev(G) = b and from Theorem 2.24, fev(G) = b− 1 = a
. Thus, we assume that 0 < a < b. Let Fi : ui, vi, xi, ui(1 ≤ i ≤ a) be a copy
of C3. Let G be the graph obtained from Fi(1 ≤ i ≤ a) by first identifying the
vertices xi−1 of Fi−1 and xi of Fi(2 ≤ i ≤ a) and then adding b−a new vertices
z1, z2, ..., zb−a−1, u and joining the b− a edges u1zi(1 ≤ i ≤ b− a− 1) and xau.
The graph G is given in Figure 3.1. Let Z = {u1z1, u1z2, ..., u1zb−a−1, xau} be
the set of all end edges of G. Let Hi = {hi, ki} (1 ≤ i ≤ a), where hi = uivi and
ki = vixi. First we show that gev(G) = b. By Theorem 1.3, every edge- to-vertex
geodetic set of G must contain at least one vertex from Hi(1 ≤ i ≤ a). Thus
gev(G) ≥ b−a+a = b. On the other hand, since the set S = Z∪{h1, h2, ..., ha}
is a minimum edge-to-vertex geodetic set of G, it follows that gev(G) ≤ |S| = b.
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Thus gev(G) = b. Next we show that fev(G) = a. Since every gev-set of
G contains Z, it follows from Theorem 2.12 that fev(G) ≤ gev(G) − |Z| =
b − (b − a) = a. Now, since gev(G) = b and every minimum edge-to-vertex
geodetic set of G contains S, it is easily seen that every minimum edge-to-vertex
geodetic set W is of the form W ∪ {e1, e2, ..., ea}, where ei ∈ Hi(1 ≤ i ≤ a).
Let T be any proper subset of S with |T | < a. Then there exists an edge
ej(1 ≤ j ≤ a) such that ej /∈ T . Let fj be an edge of Hj distinct from ej .
Then W1 = (S − {ej}) ∪ {fj} is a gev-set properly containing T . Thus W is
not the unique gev-set containing T . Thus T is not a forcing subset of S. This
is true for all minimum edge-to-vertex geodetic sets of G and so it follows that
fev(G) = a.
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