ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v103i1.9

THE FORCING EDGE-TO-VERTEX GEODETIC NUMBER OF A GRAPH

S. Sujitha¹, J. John², A. Vijayan^{3 §} ¹Department of Mathematics Holy Cross College (Autonomous) Nagercoil, 629004, INDIA ²Department of Mathematics Government College of Engineering Tirunelveli, 627007, INDIA ³Department of Mathematics N.M. Christian College Marthandam, 629165, INDIA

Abstract: For a connected graph G = (V, E), a set $S \subseteq E$ is called an *edge-to-vertex geodetic set* of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an *edge-to-vertex geodetic basis* of G. A subset $T \subseteq S$ is called a *forcing* subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The *forcing edge-to-vertex geodetic number* of S, denoted by $f_{ev}(S)$, is the cardinality of a minimum forcing subset of S. The *forcing edge-to-vertex geodetic number* of G, denoted by $f_{ev}(G)$, is the cardinality of a minimum edge-to-vertex geodetic sets S in G. Some general properties satisfied by the concept forcing edge-to-vertex geodetic number of certain classes of graphs are determined. It is shown that

Received: April 21, 2015

© 2015 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

for every pair a, b of integers with $0 \le a < b$, there exists a connected graph G such that $f_{ev}(G) = a$ and $g_{ev}(G) = b$.

AMS Subject Classification: 05C12

Key Words: edge-to-vertex geodetic number, forcing edge-to-vertex geodetic number

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and qrespectively. For basic definitions and terminologies we refer to [1]. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u-v path in G. A u-v path of length d(u,v) is called an u-v geodesic. Two vertices u and v of G are antipodal if d(u, v) = diam G or d(G). The geodetic number g(G) of G is the minimum order of a geodetic set and any geodetic set of order g(G) is called a *geodetic basis* of G. The geodetic number of a graph was introduced in [1] and further studied in [5]. For subsets A and B of V(G), the distance d(A, B) is defined as $d(A, B) = \min \{ d(x, y) : x \in A, y \in B \}$. A u - vpath of length d(A, B) is called an A-B geodesic joining the sets $A, B \in V(G)$, where $u \in A$ and $v \in B$. A vertex x is said to *lie* on an A - B geodesic if x is a vertex of an A-B geodesic. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zwedges, we write an A-B geodesic as uv-zw geodesic and d(A,B) as d(uv, zw). A set $S \subseteq E$ is called an *edge-to-vertex geodetic set* of G if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The minimum cardinality of an edge-to-vertex geodetic set of G is $g_{ev}(G)$. Any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an *edge-to-vertex* geodetic basis of G or a $g_{ev}(G)$ -set of G. The edge-to-vertex geodetic number of a graph was first introduced in [12] and further studied in [7,11]. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. An edge of a connected graph G is called an *extreme edge* of G if one of its end is an extreme vertex of G. For any edge e in a connected graph G, the edge-to-edge eccentricity $e_3(e)$ of e is $e_3(e) = max \{ d(e, f) : f \in E(G) \}$. Any edge e for which $e_3(e)$ is minimum is called an edge-to-edge central edge of G and the set of all edge-to-edge central edges of G is the edge-to-edge center of G. The minimum eccentricity among the edges of G is the edge-to-edge radius, rad G and the maximum eccentricity among the edges of G is the edge-to-edge diameter, diam G of G. Two edges e and f are antipodal if d(e, f) = diam G or d(G). This concept was studied in [9]. The forcing concept was first introduced

and studied in minimum dominating sets in [2]. And then the forcing concept is applied in various graph parameters viz. geodetic sets, hull sets, matching's, Steiner sets and edge covering in [3, 4, 6, 8, 10] by several authors. In this paper we study the forcing concept in minimum edge-to-vertex geodetic set of a connected graph.

Consider the graph G given in Figure 1.1 with $A = \{v_4, v_5\}$ and $B = \{v_1, v_2, v_7\}$, the paths $P : v_5, v_6, v_7$ and $Q : v_4, v_3, v_2$ are the only two A - B geodesics so that d(A, B) = 2. For the graph G given in Figure 1.2, the three $v_1v_6 - v_3v_4$ geodesics are $P : v_1, v_2, v_3$; $Q : v_1, v_2, v_4$; and $R : v_6, v_5, v_4$ with each of length 2 so that $d(v_1v_6, v_3v_4) = 2$. Since the vertices v_2 and v_5 lie on the $v_1v_6 - v_3v_4$ geodesics P and R respectively, $S = \{v_1v_6, v_3v_4\}$ is an edge-to-vertex geodetic basis of G so that $g_{ev}(G) = 2$.

Throughout the following G denotes a connected graph with at least three vertices. The following Theorems are used in the sequel.

Theorem 1.1. (see [12]) Let G be a connected graph with size q. Then every end-edge of G belongs to every edge-to-vertex geodetic set of G.

Theorem 1.2. (see [12]) For the complete bipartite graph $G = K_{m,n}(2 \leq 1)$

 $m < n), g_{ev}(G) = n.$

Theorem 1.3. (see [12]) If v is an extreme vertex of a connected graph G, then every edge-to-vertex geodetic set contains at least one extreme edge that is incident with v.

2. The Forcing Edge-to-Vertex Geodetic Number of a Graph

Even though every connected graph contains a minimum edge-to-vertex geodetic set, some connected graph may contain several minimum edge-to-vertex geodetic sets. For each minimum edge-to-vertex geodetic set S in a connected graph G, there is always some subset T of S that uniquely determines S as the minimum edge-to-vertex geodetic set containing T. Such "forcing subsets" will be considered in this section.

Definition 2.1. Let G be a connected graph and S an edge-to-vertex geodetic set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum edge-to-vertex geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of S, denoted by $f_{ev}(S)$, is the cardinality of a minimum forcing subset of S. The forcing edge-to-vertex geodetic number of G, denoted by $f_{ev}(G)$, is $f_{ev}(G) = \min \{f_{ev}(S)\}$, where the minimum is taken over all minimum edge-to-vertex geodetic sets S in G.

Example 2.2. For the graph G given in Figure 2.1, $S = \{v_1v_2, v_4v_5\}$ is the unique minimum edge-to-vertex geodetic set of G so that $f_{ev}(G) = 0$. For the graph G given in Figure 2.2, $S_1 = \{v_1v_2, v_6v_7, v_7v_8\}, S_2 = \{v_1v_2, v_5v_6, v_7v_8\}$ and $S_3 = \{v_1v_2, v_5v_8, v_6v_7\}$ are the only g_{ev} -sets of G, such that $f_{ev}(S_1) = 2$, $f_{ev}(S_2) = f_{ev}(S_3) = 1$ so that $f_{ev}(G) = 1$.

The next theorem follows immediately from the definition of the edge-to-vertex geodetic number and the forcing minimum edge-to-vertex geodetic number of a connected graph G.

Theorem 2.3. For every connected graph $G, 0 \leq f_{ev}(G) \leq g_{ev}(G)$.

Remark 2.4. The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 2.1, $f_{ev}(G) = 0$ and for the graph $G = K_3$, $f_{ev}(G) = g_{ev}(G) = 2$. Also, all the inequalities in the theorem are strict. For the graph G given in Figure 2.2, $f_{ev}(G) = 1$ and $g_{ev}(G) = 3$ so that $0 < f_{ev}(G) < g_{ev}(G)$.

In the following, we characterize graphs G for which bounds in the Theorem 2.3 attained and also graph for which $f_{ev}(G) = 1$.

Theorem 2.5. Let G be a connected graph. Then:

a) $f_{ev}(G) = 0$ if and only if G has a unique minimum edge-to-vertex geodetic set.

b) $f_{ev}(G) = 1$ if and only if G has at least two minimum edge-to-vertex geodetic sets, one of which is a unique minimum edge-to-vertex geodetic set containing one of its elements, and

c) $f_{ev}(G) = g_{ev}(G)$ if and only if no minimum edge-to-vertex geodetic set of G is the unique minimum edge-to-vertex geodetic set containing any of its proper subsets.

The proof of the theorem is straight forward. So we can omitt the proof.

Definition 2.6. An edge e of a connected graph G is an edge-to-vertex geodetic edge of G if e belongs to every edge-to-vertex geodetic basis of G. If G has a unique edge-to-vertex geodetic basis S, then every edge of S is an edge-to-vertex geodetic edge of G.

Example 2.7. For the graph G given in Figure 2.1, $S = \{v_1v_2, v_4v_5\}$ is the unique minimum edge-to-vertex geodetic set of G so that both the edges in S are edge-to-vertex geodetic edges of G.

Remark 2.8. By Theorem 1.1, each end edge of G is an edge-to-vertex geodetic edge of G. In fact there are certain edge-to-vertex geodetic edges, which are not end edges of G as the following example shows.

Example 2.9. For the graph G given in Figure 2.2, $S_1 = \{v_1v_2, v_6v_7, v_7v_8\}$, $S_2 = \{v_1v_2, v_5v_6, v_7v_8\}$ and $S_3 = \{v_1v_2, v_5v_8, v_6v_7\}$ are the only g_{ev} -sets of G so that every g_{ev} -set contains the edge v_1v_2 . Hence the edge v_1v_2 is the unique edge-to-vertex geodetic edge of G, which is not an end edge of G.

Theorem 2.10. Let G be a connected graph and let \Im be the set of relative complements of the minimum forcing subsets in their respective minimum edge-to-vertex geodetic set of G. Then $\bigcap_{F \in \Im} F$ is the set of edge-to-vertex geodetic edges of G.

Corollary 2.11. Let G be a connected graph and S a minimum edge-to-vertex geodetic set of G. Then no edge-to-vertex geodetic edge of G belongs to any minimum forcing set of S.

Theorem 2.12. Let G be a connected graph and W be the set of all edge-to-vertex geodetic edges of G. Then $f_{ev}(G) \leq g_{ev}(G) - |W|$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then $g_{ev}(G) = |S|, W \subseteq S$ and S is the unique minimum edge-to-vertex geodetic set containing S - W. Thus $f_{ev}(G) \leq |S - W| \leq |S| - |W| = g_{ev}(G) - |W|$.

Corollary 2.13. If G is a connected graph with k end edges, then $f_{ev}(G) \leq g_{ev}(G) - k$.

Proof. This follows from Theorems 1.1 and 2.12.

Remark 2.14. The bound in Theorem 2.12 is sharp. For the graph G given in Figure 2.3, $S_1 = \{v_1v_2, v_2v_3, v_4v_5, v_4v_6\}, S_2 = \{v_1v_2, v_3v_4, v_4v_5, v_4v_6\}, S_3 = \{v_1v_2, v_2v_3, v_4v_5, v_2v_6\}$ and $S_4 = \{v_1v_2, v_3v_4, v_4v_5, v_2v_6\}$ are the only four minimum edge-to-vertex geodetic sets of G such that $f_{ev}(S_1) = f_{ev}(S_2) = f_{ev}(S_3) = f_{ev}(S_4) = 2$ so that $f_{ev}(G) = 2$ and $g_{ev}(G) = 4$. Also, $W = \{v_1v_2, v_4v_5\}$ is the set of all edge-to-vertex geodetic edges of G and so $f_{ev}(G) = g_{ev}(G) - |W|$.

Also, the inequality in Theorem 2.12 can be strict. For the graph G given in Figure 2.2, $g_{ev}(G) = 3$ and $f_{ev}(S_2) = f_{ev}(S_3) = 1$ and $f_{ev}(S_1) = 2$ so that $f_{ev}(G) = 1$. Here, v_1v_2 is the only edge-to-vertex geodetic edge of G and so $f_{ev}(G) < g_{ev}(G) - |W|$.

In the following we determine the forcing edge-to-vertex geodetic number of some standard graphs.

Theorem 2.15. For an even cycle $C_p (p \ge 4)$, a set $S \subseteq E(G)$ is a minimum edge-to-vertex geodetic set if and only if S consists of antipodal edges.

Proof. Let p = 2k and let $C_p : v_1, v_2, v_3, ..., v_k, v_{k+1}, ..., v_{2k}, v_1$ be the cycle. Then the edges v_1v_2 and $v_{k+1}v_{k+2}$ are antipodal edges. Let $S = \{v_1v_2, v_{k+1}v_{k+2}\}$. Clearly, S is a minimum edge-to-vertex geodetic set of C_p . Conversely, let Sbe a minimum edge-to-vertex geodetic set of C_p . Then $g_{ev}(C_p) = |S|$. Let S'be any set of pair of antipodal edges of C_p . Then as in the first part of this theorem, S' is a minimum edge-to-vertex geodetic set of C_p . Hence |S'| = |S|. Thus $S = \{uv, xy\}$. If uv and xy are not antipodal, then any vertex that is not on the uv - xy geodesic does not lie on the uv - xy geodesic. Thus S is not a minimum edge-to-vertex geodetic set, which is a contradiction.

Theorem 2.16. For the cycle
$$C_p(p \ge 4)$$
, $f_{ev}(C_p) = \left\{ \begin{array}{cc} 1 & if \ p \ is \ even \\ 2 & if \ p \ is \ odd \end{array} \right\}$.

Proof. If p is even, then by Theorem 2.15, every minimum edge-to-vertex geodetic set of C_p consists of pair of antipodal edges. Hence C_p has p/2 independent minimum edge-to-vertex geodetic sets and it is clear that each singleton set is the minimum forcing set for exactly one minimum edge-to-vertex geodetic set of C_p . Hence it follows from Theorem 2.5 (a) and (b) that $f_{ev}(C_p) = 1$.

Let p be odd. Let p = 2n + 1. Let the cycle be $C_p : v_1, v_2, v_3, ..., v_{2n+1}, v_1$. If $S = \{uv, xy\}$ is any set of two edges of C_p , then no edge of the uv - xy longest

path lies on the uv - xy geodesic in C_p and so no two element subset of C_p is an edge-to-vertex geodetic set of C_p . Now, it clear that the sets

$$S_{1} = \{v_{1}v_{2}, v_{n+1}v_{n+2}, v_{2n}v_{2n+1}\},\$$

$$S_{2} = \{v_{1}v_{2}, v_{n+1}v_{n+2}, v_{2n+1}v_{1}\},\$$

$$S_{3} = \{v_{2}v_{3}, v_{n+2}v_{n+3}, v_{2n+1}v_{1}\}, \dots,\$$

$$S_{2n} = \{v_{n}v_{n+1}, v_{2n}v_{2n+1}, v_{n-1}v_{n}\},\$$

$$S_{2n+1} = \{v_{n+1}v_{n+2}, v_{2n+1}v_{1}, v_{n-1}v_{n}\}$$

are the minimum edge-to-vertex geodetic sets of C_p . (Note that there are more minimum edge-to-vertex geodetic sets of C_p , for example

$$S = \{v_{n+2}v_{n+3}, v_1v_2, v_nv_{n+1}\}$$

is a minimum edge-to-vertex geodetic set different from these). It is clear from the minimum edge-to-vertex geodetic sets $S_i (1 \le i \le 2n + 1)$ that each $\{v_i v_{i+1}\} (1 \le i \le 2n)$ and $\{v_{2n+1}v_1\}$ is a subset of more than one minimum edge-to-vertex geodetic set $S_i (1 \le i \le 2n + 1)$. Hence it follows from Theorem 2.5 (a) and (b) that $f_{ev}(C_p) \ge 2$. Since S_1 is the unique minimum edge-to-vertex geodetic set containing $T = \{v_{n+1}v_{n+2}, v_{2n}v_{2n+1}\}$, it follows that $f_{ev}(S_1) = 2$. Thus $f_{ev}(C_p) = 2$.

Theorem 2.17. For the complete graph $G = K_p (p \ge 4)$ with p even, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of p/2 independent edges.

Proof. Let S be any set of p/2 independent edges of K_p . Since each vertex of K_p is incident with an edge of S, it follows that $g_{ev}(G) \leq p/2$. If $g_{ev}(G) < p/2$, then there exists a minimum edge-to-vertex geodetic set S' of K_p such that |S'| < p/2. Therefore, there exists at least one vertex v of K_p such that v is not incident with any edge of S'. Hence v is neither incident with any edge of S' nor lies on a geodesic joining a pair of edges of S' and so S' is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Thus S is a minimum edge-to-vertex geodetic set of K_p .

Conversely, let S be a minimum edge-to-vertex geodetic set of K_p . Let S' be any set of p/2 independent edges of K_p . Then as in the first part of this theorem, S' is a minimum edge-to-vertex geodetic basis of K_p . Therefore |S'| = p/2. Hence |S| = p/2. If S is not independent, then there exists a vertex v of K_p such that v is not incident with any edge of S and it follows that S

is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Therefore, S consists of p/2 independent edges.

Theorem 2.18. For the complete graph $G = K_p(p \ge 4)$ with p even, $f_{ev}(G) = \frac{P-2}{2}$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G such that |S| = p/2. Then by Theorem 2.17, every element of S is independent. We show that $f_{ev}(G) = \frac{P}{2} - 1$. Suppose that $f_{ev}(G) \leq \frac{P}{2} - 2$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| \leq \frac{P}{2} - 2$. Hence there exists at least two edges $u_i u_j$, $u_l u_m \in S$ such that $u_i u_j$, $u_l u_m \notin T$ and $i \neq l, j \neq m$. Then $S_1 = S - \{u_i u_j, u_l u_m\} \cup \{u_i u_m, u_l u_j\}$ is a set of p/2 independent edges of G containing T. By Theorem 2.16, S_1 is a minimum edge-to-vertex geodetic set of G which is a contradiction to T is a forcing subset of S. Hence $f_{ev}(G) = \frac{P}{2} - 1 = \frac{P-2}{2}$.

Theorem 2.19. For the complete graph $G = K_p (p \ge 5)$ with p odd, a set S of edges of G is a minimum edge-to-vertex geodetic set of G if and only if S consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G.

Proof. Let S_1 be any set of $\frac{P-3}{2}$ independent edges of K_p and S_2 be two adjacent edges of K_p , each of which is independent with the edges of S_1 . Let $S = S_1 \cup S_2$. Since each vertex of K_p is incident with an element of S, it follows that S is a minimum edge-to-vertex geodetic set of K_p so that $g_{ev}(G) \leq \frac{P-3}{2} + 2 = \frac{P+1}{2}$. If $g_{ev}(G) < \frac{P+1}{2}$, then there exists a minimum edge-to-vertex geodetic set S' of K_p such that $|S'| < \frac{P+1}{2}$. Therefore, there exists at least one vertex v of K_p such that v is not incident with any edge of S'. Hence the vertex v is neither incident with any edge of S' nor lies on a geodesic joining a pair of edges of S' and so S' is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Hence $g_{ev}(G) = \frac{P+1}{2}$.

Conversely, let S be a minimum edge-to-vertex geodetic set of G. Let S' be any set of $\frac{P-3}{2}$ independent edges of G and two adjacent edges of G. Then as in the first part of this theorem, S' is a minimum edge-to-vertex geodetic set of G. Therefore, $|S'| = \frac{P+1}{2}$. Hence $|S| = \frac{P+1}{2}$. Let us assume that $S = S_1 \cup S_2$, where S_1 consists of independent edges and S_2 consists of adjacent edges of G. If $|S1| \leq \frac{P-3}{2} - 1$, then S_2 must contain at most $n - |S_1|$ edges. Then there exists at least one vertex v of K_p such that v is not incident with any edge of S and so S is not a minimum edge-to-vertex geodetic set of G, which is a contradiction. Therefore S consists of $\frac{P-3}{2}$ independent edges of G and two adjacent edges of G.

Theorem 2.20. For the complete graph $G = K_p(p \ge 5)$ with p odd, $f_{ev}(G) = \frac{P-1}{2}$.

Proof. Let S be a minimum edge-to-vertex geodetic set of G. Then by Theorem 2.19, $S = S_1 \cup S_2$, where S_1 consists of $\frac{P-3}{2}$ independent edges and S_2 consists of two adjacent edges and $|S| = \frac{P+1}{2}$. We show that $f_{ev}(G) = \frac{P+1}{2} - 1$. Suppose that $f_{ev}(G) \leq \frac{P+1}{2} - 2$. Then there exists a forcing subset T of S such that S is the unique minimum edge-to-vertex geodetic set of G containing T and $|T| \leq \frac{P+1}{2} - 2$. Hence there exists at least two edges $x, y \in S$ such that $x, y \notin T$. Let us assume that $S_2 = \{u_x u_y, u_y u_z\}$. Suppose that $x, y \in S_1$. Then $x = u_i u_j$ and $y = u_l u_m$ such that $i \neq l, j \neq m$. Now, $S_3 = S - \{x, y\} \cup \{u_i u_m, u_l u_j\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.19, S_3 is a minimum edge-to-vertex geodetic set of G containing T, which is a contradiction to T is a forcing subset of G. Suppose that $x, y \in S_2$. Let $x = u_x u_y$ and $y = u_y u_z$. Let $u_i u_j$ be an edge of S_1 . Now, join the vertices u_y, u_i and u_z, u_j . Now $S_4 = S_1 - \{u_i u_j\} \cup \{u_x u_y\} \cup \{u_y u_i, u_z u_j\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G. By Theorem 2.19, S_4 is a minimum edge-to-vertex geodetic set of G containing T, which is a contradiction. Suppose that $x \in S_1$ and $y \in S_2$. Let $x = u_i u_j$ and $y = u_x u_y$. Now, $S_5 = S_1 - \{u_i u_j\} \cup \{u_j u_y\} \cup \{u_i u_x, u_y u_z\}$ consists of $\frac{P-3}{2}$ independent edges and two adjacent edges of G containing T. By Theorem 2.19, S_5 is a minimum edge-to-vertex geodetic set of G, which is a contradiction to that Tis a forcing subset of G. Hence $f_{ev}(G) = \frac{P+1}{2} - 1 = \frac{P-1}{2}$.

Theorem 2.21. A set S of edges of $G = K_{n,n}$ $(n \ge 2)$ is a minimum edgeto-vertex geodetic set of G if and only if S consists of n independent edges.

Proof. The proof is similar to the proof of Theorem 2.17. \Box

Theorem 2.22. For the complete bipartite graph $G = K_{n,n} (n \ge 2)$, $f_{ev}(G) = n - 1$.

Proof. The proof is similar to the proof of Theorem 2.18.

Theorem 2.23. A set S of edges of $G = K_{m,n} (2 \le m < n)$ a minimum edge-to-vertex geodetic set of G if and only if S consists of m-1 independent edges of G and n-m+1 adjacent edges of G.

Proof. The proof is similar to the proof of Theorem 2.19.

Theorem 2.24. For the complete bipartite graph $G = K_{m,n} (2 \le m < n)$, $f_{ev}(G) = n - 1$.

Proof. The proof is similar to the proof of Theorem 2.20.

Theorem 2.25. For a non trivial tree of size $q \ge 2$, $f_{ev}(G) = 0$.

Proof. For $G = K_{1,q}$, it follows from Theorem 1.1 that the set of all end edges of G is the unique minimum edge-to-vertex geodetic set of G. Now, it follows from Theorem 2.5(a) that $f_{ev}(G) = 0$.

3. Realization Result

In view of Theorem 2.3, we have the following realization theorem.

Theorem 3.1. For every pair a, b of integers with $0 \le a < b$, there exists a connected graph G such that $f_{ev}(G) = a$ and $g_{ev}(G) = b$.

Proof. Suppose a = 0. Let $G = K_{1,b}$. Then by Theorem 2.25, $f_{ev}(G) = 0$ and from Theorem 1.1, $g_{ev}(G) = b$. Suppose that b = a + 1. Let $G = K_{2,b}$. Then by Theorem 1.2, $g_{ev}(G) = b$ and from Theorem 2.24, $f_{ev}(G) = b - 1 = a$. Thus, we assume that 0 < a < b. Let $F_i : u_i, v_i, x_i, u_i (1 \le i \le a)$ be a copy of C_3 . Let G be the graph obtained from $F_i(1 \le i \le a)$ by first identifying the vertices x_{i-1} of F_{i-1} and x_i of $F_i(2 \le i \le a)$ and then adding b - a new vertices $z_1, z_2, ..., z_{b-a-1}, u$ and joining the b - a edges $u_1 z_i (1 \le i \le b - a - 1)$ and $x_a u$. The graph G is given in Figure 3.1. Let $Z = \{u_1 z_1, u_1 z_2, ..., u_1 z_{b-a-1}, x_a u\}$ be the set of all end edges of G. Let $Hi = \{h_i, k_i\} (1 \le i \le a)$, where $h_i = u_i v_i$ and $k_i = v_i x_i$. First we show that $g_{ev}(G) = b$. By Theorem 1.3, every edge- to-vertex geodetic set of G must contain at least one vertex from $H_i(1 \le i \le a)$. Thus $g_{ev}(G) \ge b - a + a = b$. On the other hand, since the set $S = Z \cup \{h_1, h_2, ..., h_a\}$ is a minimum edge-to-vertex geodetic set of G, it follows that $g_{ev}(G) \le |S| = b$.

Thus $g_{ev}(G) = b$. Next we show that $f_{ev}(G) = a$. Since every g_{ev} -set of G contains Z, it follows from Theorem 2.12 that $f_{ev}(G) \leq g_{ev}(G) - |Z| = b - (b - a) = a$. Now, since $g_{ev}(G) = b$ and every minimum edge-to-vertex geodetic set of G contains S, it is easily seen that every minimum edge-to-vertex geodetic set W is of the form $W \cup \{e_1, e_2, ..., e_a\}$, where $e_i \in H_i(1 \leq i \leq a)$. Let T be any proper subset of S with |T| < a. Then there exists an edge $e_j(1 \leq j \leq a)$ such that $ej \notin T$. Let f_j be an edge of H_j distinct from e_j . Then $W_1 = (S - \{e_j\}) \cup \{f_j\}$ is a g_{ev} -set properly containing T. Thus W is not the unique g_{ev} -set containing T. Thus T is not a forcing subset of S. This is true for all minimum edge-to-vertex geodetic sets of G and so it follows that $f_{ev}(G) = a$.

References

- F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] G. Chartrand, H. Galvas, R.C. Vandell and F. Harary, The forcing domination number of a graph, J. Combin. Math. Comput, 25(1997) 161 - 174
- [3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Graph Theory, 19(1999) 45 - 58.
- [4] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Comput, 36(2001) 81-94..
- [5] F. Hararry, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling, 17(1993), 89-95.
- [6] Heping Zhang, Dong Ye, Wai Chee and Shiu, Forcing matching numbers of fullerene graphs, *Discrete Applied Mathematics*, 158(2010) 573-582.

- [7] J. John, A.vijayan and S.Sujitha, The Upper Edge-to-Vertex Geodetic Number of a Graph, International Journal of Mathematical Archive, 3(4)(2012) 1423-1428.
- [8] Peter Adams, Mohammad Mahdian and E. S.Mahmodian, On the forced matching numbers of bipartite graphs, *Discrete Mathematics*, 281(2004) 1-12.
- [9] A.P. Santhakumaran, Center of graph with respect to edges, *Scientia*, 19(2010) 13-23.
- [10] A. P. Santhakumaran and J. John, The forcing Steiner number of a Graph, Discuss. Math. Graph Theory, 31(2011) 171-181.
- [11] A.P. Santhakumaran and J. John, On the Edge-to-Vertex Geodetic Number of a Graph, *Miskolc Mathematical Notes*, 13(1)(2012) 107-119.
- [12] A.P. Santhakumaran and J. John, The Edge-to-Vertex Geodetic Number of a Graph, *Serdica Journal of Mathematics* (communicated).